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1 Introduction

This work is motivated by the existent concern with the finite-sample properties of the meth-
ods of estimation of the parameters of dynamic panel data models. When a panel data model
includes lagged dependent explanatory variables, the within-group estimator is asymptotically
valid only when the time dimension of the panel gets large. Since the time series dimension (7'
of most panel data sets is a single-digit number, Instrumental Variables (IV) and Generalized
Method of Moments (GMM) estimators, which are consistent for finite 7" when the number
of cross-section observations (N) tends to infinite, have been considered in the literature (see,
Anderson and Hsiao, 1982; Arellano and Bond, 1991 and Blundell and Bond, 1998). Neverthe-
less, for example, panel data sets where the units of analysis are the regions of a country (or
cross-country panels) most likely have a time dimension larger than a single-digit number, even
though, this gain normally comes at the cost of not having a very large number of cross-section
observations. This leads us to address the following question: how to estimate and conduct
inference in dynamic panel data models in small samples in which the time dimension of the
panel is not short and the cross-section dimension is not that large? Lets denote this case as
a two-sided small sample in opposition to the most standard one-sided small sample panels, in
which T is very small and N is very large. The panels we consider are small in the sense that,
even though N x T may be large, none of the sides gets very large itself.

Many interesting variables exhibit state dependence, that is, the current state of a variable
depends on its last period’s state, even after controlling for unobserved heterogeneity. Thus,
very often, we use panel data to estimate dynamic relationships, namely, models containing
lagged dependent variables among the regressors. A nice example is the wage curve of Blanch-
flower and Oswald (1994). In its simplest form, regional wages are modeled as a dynamic two-
way fixed effect error component model in which regional unemployment is assumed to affect
regional wages negatively (i.e., in self-explaining notation, w;; = pw; -1 + Yuir + pi + At + €i.¢).
For example, for the U.S., this model is estimated with samples in which N = 50 and T" tends
to be less than 20 (see, among others, Blanchard and Katz, 1997). Two issues are at the center
of the debate in this literature: first, whether p is one (a Phillips curve form), zero (a static
wage curve) or, as it is more likely the case, somewhere in between (a stable dynamic wage
curve). Thus, there is interest in establishing the type of dynamic process followed by regional

wages. Second, whether «y (the coefficient associated with the unemployment variable) is nega-



tive and statistically different from zero. To answer these questions, we need to obtain accurate
estimates of both the parameters of the model and their sample variability in small samples
like the ones normally available. Although IV and especially GMM estimators have attractive
asymptotic properties, Monte Carlo simulations show that their finite sample approximations
are poor and sensible to the actual parameter values as well as to the dimension of the data
sets (see, among others, Arellano and Bond, 1991 and Kiviet, 1995). However, in most of these
simulations T is very small and N is reasonably large. More importantly, little is known about
the reliability of asymptotic test procedures in this type of small panels when N is also short
(an exception is Bun and Kiviet (2001) who consider the case in which 7" and N are less than
20).

In this paper we consider two-sided small size panels where T is larger than a single-digit
number but N is not very large. We study the finite-sample properties of the dominant methods
proposed in the literature to estimate dynamic panel models. These methods are the least-
squares dummy-variable (LSDV) approach, a LSDV bias-corrected estimator proposed by Kiviet
(1995, LSDVC hereafter) and two GMM procedures, the one proposed by Arellano and Bond
(1991) (AB hereafter) and the one developed by Blundell and Bond (1998) (BB hereafter).
Our simulation design follows a standard specification of a dynamic panel data model, i.e.,
a first order autoregressive model with an additional explanatory variable. We consider two
data generation process. In the first Monte Carlo experiment, the exogenous variable and
the unobservable time invariant effect are not correlated while in the second experiment they
are correlated. The dynamic adjustment or autoregressive parameter varies between 0.2 (low
persistence) and 0.8 (high persistence).

Our main results are the following: first, standard inference is not valid for any of the
estimators and data generation process considered in this paper. We find that for all the
estimators studied, the true size of t-type tests may differ substantially from their asymptotic
nominal level although the way they depart from the normal asymptotic approximation vary
among them. Interestingly, this is also the case when we test the null hypothesis of v = a €
[—1,1] (where v is the parameter associated to the exogenous variable in the dynamic model
studied) for all the estimators considered in this study. Surprisingly, this result also holds when
the null hypothesis is v = 0 and, but not necessarily, the dependent and exogenous explanatory

variables are correlated in the data generating process (DGP), which is likely to be the case



in practice. Thus, irrespective of which estimator performs better in terms of bias and root-
mean square error (RMSE), most often the criteria considered to compare the small sample
performance of these estimators, it is necessary to consider also the finite sample behavior of
t-type tests in order to conduct valid statistical inference in small sample dynamic panel data
models. These results are very important and have not been studied in the literature. Second,
the LSDVC estimator proposed by Kiviet (1995) outperforms all other estimators considered
both in terms of bias and RMSE. Thus, this estimator is recommended for estimating dynamic
panel models on samples of the type studied in this paper. However, to assess its true sample
variability, and hence, to conduct valid statistical inference in small samples, bootstrap standard
errors have to be computed. Third, we find that standard bootstrapping techniques work well
except when the autoregressive parameter in the model is close to one. In this last case, we find
that the Grid-t bootstrap procedure due to Hansen (1999) outperforms any other alternative to
estimate the standard errors of the estimates of the parameters of dynamic panel data models
in small samples. Fourth, the bias of the fixed effect estimator is large, even for T" as large as
30 when N = 50. This last result demonstrates the poor performance of this estimator even for
large 7" when N is not very large (see also Judson and Owen, 1999), which is likely to be the
case. Thus, it is invalid to use it for most of the panel data sets available. Finally, the GMM
estimator proposed by Blundell and Bond (1998) performs better than the one developed by
Arellano and Bond (1991). However, the difference between them appears to be significant only
when p is low, contradicting the finding that the system estimator is more accurate when p is
large in samples where T is a single-digit number and N is very large (see Blundell and Bond,
1998).

The rest of the paper is organized as follows. Section 2 presents the model and briefly reviews
the estimators we study. Section 3 summarizes the results of our Monte Carlo experiments
and Section 4 evaluates the performance of several bootstrap techniques to assess the sample
variability of the estimates of the parameters of interest by means of the estimator proposed
by Kiviet (1995). Section 5 presents two estimations of the wage curve. Finally, Section 6

concludes the paper.



2 Dynamic Unobserved Effects Model

Consider the following first order autoregressive model with an additional explanatory variable:

Yit = PYis—1 + VTig + i + Uiy (1)

wherei=1,---,Nand t=1,---,T indexes cross-section and time series observations, respec-
tively. The unobserved effects (y;), which are modeled as fixed effects, are probably correlated
with the included exogenous regressor x. The {x;.} are strictly exogenous conditional on the
unobserved effects. We also assume dynamic stability (i.e., |p| < 1). For simplicity, the w;; are
assumed to be independently distributed across units with zero mean and constant variance

o2. Stacking the observations over time and cross-section units we obtain:

y=W§ +(In® i) p+u 2)

where § = (p, 7)’, y is an NT x 1 vector of stacked observations of the dependent variable
and W = [y_1:X] is an NT X 2 matrix of stacked observations of the independent variables
of the model. w is the NT x 1 vector of disturbances and ¢ = (1,...,1)" is 7" x 1. The time
invariant unobserved effects vector u = (u1, -+, un)" is a vector of N unknown parameters
corresponding to the fixed effects in model (1).

In this study we consider the case of panels where the sample size in the cross-section
dimension (N) vary between 30 and 50, whereas its time series dimension (7) is between 20
and 40. This type of small sample panels has received little attention in the literature. Most
of the work on the estimation of small sample dynamic panel data models considers the case
where T is a single-digit number and an asymptotic analysis is conducted by treating T as
a fixed number and letting N tend to infinite. For this specification a number of alternative

estimators have been proposed. We now review those we study in this paper.

2.1 LSDV Estimator

Estimation of the parameters of model (1) can be performed by ordinary least squares by means
of the LSDV or fixed effects (FE) estimator. Using standard regression results, the fixed effects

estimator of § can be expressed as:



3LSDV = (VV’z‘lVV)_1 W’Ay (3)

where the NT x NT matrix A = Iy ® (It — furiy) is the within transformation which wipes
out the individual fixed effects.

As it is well known, the within-group LSDV estimator of the parameters of model (1) is
semi-inconsistent since in the transformed model, the lagged dependent variable is correlated
with the error term. Nevertheless, this estimator is consistent when T — oco. Thus, the LSDV
estimator is supposed to perform well for panels with a large T" dimension. But how large T

should be before the bias of the LSDV estimator is ignorable is left unanswered in the literature.

2.2 GMM Estimators

Several consistent instrumental variables estimators have been proposed in the literature to es-
timate the parameters of model (1) for panels of moderate 7" size. Here we restrict our analysis
only to those proposed by Arellano and Bond (1991) and Blundell and Bond (1998). When
there are no instruments available that are uncorrelated with the individual effects p;, the
transformation of the model must eliminate this component from the error term. Arellano and
Bond (1991) suggest differencing the regression function (1) to eliminate the individual specific
effects, and estimate the parameters of the differenced model by a GMM estimator using ap-
propriately lagged endogenous and predetermined variables as instruments in the transformed
equations since, after differencing, Ay;;—q is correlated with the differenced equation error,
Au, ;. However, as long as u, is serially uncorrelated, all lags on y and x beyond ¢t — 1 are
valid instruments for the differenced equation at period ¢t. Because the number of instruments
increases with the time series dimension 7', the model generates many overidentifying restric-
tions even for moderate values of T, although the quality of these instruments is often poor.
When there are instruments available that are uncorrelated with the individual effects p;, these
variables can be used as instruments for the equations in levels. Blundell and Bond (1998)
propose an estimator, which combines a set of moment conditions relating to the equations in
first differences and a set of moment conditions relating to the equations in levels to obtain
an efficient GMM estimator. They show that this system estimator has superior properties
in terms of small sample bias and RMSE than the estimator proposed by Arellano and Bond
(1991), specially when the DGP presents a high level of persistence.
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These GMM estimators are of the form:
dcarsr = [(W* Z) Ay (ZW*)]H(W*' Z) Ax (Z'y") (4)
where
1 1

and W* and y* denote some transformation of W and y (e.g. levels, first differences, etc.), Z;
is a matrix of instrumental variables, and H; is an individual specific weighting matrix.

The estimator proposed in Arellano and Bond (1991) uses the first difference transformation

and
2 -1
-102
HAB =
-1
0 O -1 2
The corresponding instrumental variable matrix is:
vy 0 0 0 0 0 -~ 0 - 0 Azss
0O w1 %2 O O O -~ O .- 0 Axyy
ZAB =1 0 0 0 wya w2 ¥s (5)
0o 0 0 0 0 0 - ya - Y2 ADzr

The estimator proposed by Blundell and Bond (1998) adds to the first-difference equations
the levels equations. In this case yf = (Ayis, ..., Ayir, Yis,s - - -, Yir)’

/
W* — ( Ay ... Ayi,(T—l) Yo -+ Yi(T-1) )

i
Al’ig c. Axi,T ri3 ... XTiT

and



The specific weighting matrix used is:

HAB 0
BB __ 4
H" _( 0 iz )
5dT—2

where I7_5 is the identity matrix with dimension equal to the observed number of levels equa-

tions. Unlike SLSDV, both GMM estimators, AB and BB, are consistent for finite 7" when

N — 0.

2.3 Corrected LSDV Estimation

Finally, we also consider a bias corrected version of the LSDV estimator due to Kiviet (1995).
This estimator is computed by subtracting an approximation, of order O(N~'T73/2), of the

asymptotic bias of the LSDV estimator. Kiviet (1995) demosntrates that:
B(Gusoy =) = —o3(D) ™ (0 Cur)l2q = W AW(D) g
+ to{W'(Iy ® ArCA7)W(D) ' }q
+ W(Iy ® ArCAr)W(D) "¢+ 0yN¢ (D) 'q
x [—JJY(L;CLT)H{C’ATC} + 2tr{C”ATCATC}]q>
+O(N~IT=3/%) (6)

where tr denotes the trace operator, D = W/AW + o2Ntr{C'ArC}qq, Ay = Iy — %LTL/T,
q=(1,0,---,0), AW = E(AW) and



~ 0 0_
1
10
c=| "
p* o p
_pT_2 . . . plo_

Therefore, the asymptotic bias of the LSDV estimator is a function of the true parameters
of the model. Thus, to compute the LSDVC estimator, an estimation of this asymptotic bias
is subtracted from the LSDV estimate. And to obtain an estimation of this asymptotic bias,
we estimate the paremeters of the model by means of the simple IV estimator proposed by
Anderson and Hsiao (1981).

3 Monte Carlo Simulations

In this section we study the finite-sample properties of the estimators presented in the previous
section. Our simulation follows closely the experimental design adopted in Arellano and Bond
(1991). The dependent variable is generated by model (1), where u;; ~ IN(0, 1), u; ~ IN(0, 1),
t=1,---,N;t=1,---, T+10 and y; o0 = 0. The first ten cross-sections are discarded so that

the actual sample size is NT'. The exogenous regressor x;; is generated by the following DGP:

Tip = 0.8 + Ay + vy

where v;; ~ N (0, 0.9), ;0 = 0 and A takes the values zero or one.

When A = 1, the exogenous regressor in model (1) is correlated with the unobserved fixed
effect in that model, while they are uncorrelated when A\ = 0. This latter case is the one studied
in Arellano and Bond (1991). The results of the Monte Carlo experimets we conduct are very
similar for both DGPs. Thus, here we only report those corresponding to the case where A = 0.1

The choice of the parameters is as follows: p = 0.2,0.5 and 0.8, v = —1,0 and 1, N = 30, 50

and T' = 20, 30,40. Table 1 summarizes the resultant combination of parameter values used in

IThe results of the Monte Carlo experiments for the case where A = 1 are available upon request.



the Monte Carlo experiments. Tables 2, 3 and 4 and Figure 1 summarize the most important

results of these experiments when \ = 0.2
Table 1 about here

Table 2 presents the bias and RMSE for both p and ~, for each estimator. It is clear that
the estimator proposed by Kiviet (1995) (K in the table) outperforms the other estimators in
all cases both in terms of bias and RMSE, not only for the estimator of the autoregressive
parameter p but also for the estimator of the coefficient of the exogenous regressor v when the

true parameter value is different from zero.
Table 2 about here

The LSDV estimator of p is largely biased in most specifications. As expected, the bias
decreases as p and T increase. For example, for 7" = 20, N = 30 and v = 0, the bias of the
estimate of p goes from 34% (Case I) to 14% (Case I1I) as the true value of p goes from 0.2 to
0.8 (See panel (a) in Figure 1). Similarly, for the case in which N = 50, v = 0 and p = 0.2, the
bias in the LSDV estimator of p goes from more than 30% for 7" = 20 (Case I) to almost 15%
for T'= 40 (Case XIII).

Figure 1 about here

The bias in the estimate of ~ is small. It is less than one percent when the DGP assumes
v = 0 and ranges between 1 and 3.3 percent when ~ is different from zero.

In most of the specifications, both AB and BB estimators perform better than the LSDV
estimator, both in terms of bias and RMSE. However, they perform worse than the LSDVC
estimator, especially in estimating p. Interestingly, both GMM estimators display a similar bias
pattern. When v = 0, the bias in the estimate of p for fixed T and N decreases when the true
parameter goes from 0.2 to 0.5 (i.e., Cases I and II, or XIII and XIV) and increases when it goes
from 0.5 to 0.8 (i.e., Cases II and III, or XIV and XV. See panel (a) in Figure 1). This implies
that the bias is worse either when the dynamic adjustment of the variable studied is slow or

fast. This “U” bias pattern, however, does not appear when ~ is different from zero. More

2The whole set of results is in the annex.
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relevant, the GMM estimator proposed by Blundell and Bond (1998) seems to perform better
than the one developed by Arellano and Bond (1991). However, the difference between them
seems to be significant only when p is small, contrary to the finding that the system estimator
is more accurate when p is large in samples where T' is a single-digit number and N is large (see
Blundell and Bond, 1998). In addition, and very importantly, for fixed values of 7" and N, in
the range of values we are considering in this study, when p = 0.8 (i.e. for large values of this
parameter) the bias in the estimation of this coefficient by the LSDV estimator converges to
the bias of both GMM estimators (see Figure 1). Finally, as expected, when T" increases, there
are not differences among these three estimators. Nevertheless, even for T' as high as 40, the
LSDVC estimator dominates the other estimators both in terms of bias and RMSE. Thus, the
estimator proposed by Kiviet (1995) is preferred for estimating the parameters of model (1) in
the class of small samples that we study in this paper.

Tables 3 and 4 present the quantile tabulation of the 1st, 5th, 10th, 90th, 95th and 99th
percentiles of the distribution of the t-statistic for the following null hypotheses: Hy : p =
0.2, p=0.5, and p = 0.8 (Table 3) and Hy:y =0,y =1 and 7= —1 (Table 4).

Table 3 about here

The quantiles of the distribution of the ¢-test do not coincide with those of the asymptotic
standard normal approximation, not only for the LSDV and GMM estimators but also, and
more relevant, for the LSDVC estimator. This result is extremely important because it casts
doubts about the appropriateness of conducting standard asymptotic statistical inference in
small sample dynamic panel data models, irrespective of the method of estimation adopted.

The distribution of the t-test when p is estimated by means of the LSDV estimator is clearly
skewed to the left. The same result holds for the two GMM estimators, although the skewness
of the distribution of the ¢-test seems to be less severe in these cases. More importantly, even
though the distribution of the t-test when p is estimated by means of the LSDVC estimator is
not skewed, it is neither a standard normal distribution.

Table 4 shows the critical values of the t-statistics of the postulated null hypothesis for ~.
Irrespective of the method of estimation adopted, the distribution of these tests do not seem
to be skewed, but again, they are not a standard normal distribution even when v = 0 under

the null hypothesis.
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Table 4 about here

Thus, the evidence presented suggest that the LSDVC estimator must be preferred for
estimating the parameters of model (1) in the class of small samples that we study in this
paper. However, the results reported in Tables 3 and 4 also suggest that, even in this case,
standard statistical inference is misleading and hence, bootstrap standard errors have to be
computed to conduct valid statistical inference. Though, which bootstrap estimator performs

better is not known. In the next section we address this issue.

4 Small Sample Statistical Inference

In this section we consider the problem of constructing bootstrap confidence intervals of 90%
coverage for the estimates of the parameters of model (1) in two-sided small samples. A correctly
constructed confidence interval has the property that in 10% of the samples, the true value of
the parameter lies outside the limits of the interval.

All the experiments reported in this section are based on 1000 replications of samples gen-
erated by model (1), where T"= 20, N = 30, p = 0.2, 0.5 and 0.8, v = 1, A = 0 and the errors
are independent and Gaussian as in section 3.

We compare several methods to assess the sample variability of the estimates of the parame-
ters of model (1). Conventional asymptotic confidence intervals are computed as &41.645 s(&),
where « is either p or v and s(&) is the estimated standard deviation of the coefficient. Stan-
dard bootstrapping confidence intervals are constructed by means of the Percentile-t bootstrap
technique (see Hall, 1992). We generate B = 1999 simulated samples to construct bootstrapped
confidence intervals for the estimates of the parameters of model (1).

Each bootstrapping sample is generated as follows:

1. Obtain LSDVC estimates of p, v and p = (g1, -+, pn)’. Denote these estimates as: p,
4, and 1 = (fi1, -+, i) respectively. Using these coefficients, generate the series of

predicted residuals ;.

2. Generate a simulated sample of yfvt, t=1,---,T,foreachi=1,---, N, by drawing errors

independently from the set of estimated residuals (; 1, - -, @; 1), and then, by computing
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yzt = /Byzb,tq + Yxi + 1 + ﬁ?}t, t=1,---,T
where z;, is taken as fixed and yf’o = 0.

For each resampled data set {ygt, xit}, b=1,..., B, estimate model (1) and obtain boot-
strap LSDVC estimates of p°, 4 and of their respective standard deviations s°(p°) and s°(4?).
Then, the bootstrap confidence intervals are constructed in a standard way. First, compute
the 5% and 95% quantiles of the t-statistic distribution (¢y,ts,...,t5), where t, = SO{,%I?) and
a = p,7v. Denote these quantiles ¢2 and ¢4. Second, for each coefficient, its confidence interval
is given by: [a@ — ¢¢s(a4), &+ ¢45s(a)].

Since the standard bootstrap confidence interval fails to provide an asymptotic correct
coverage when the autoregressive coefficient is close to one (see Basawa et al. (1991)), we
also consider three other bootstrap methods when p = 0.8. The biased-corrected percentile
bootstrap due to Kilian (1998), and the Grid-a and Grid-¢ bootstrap due to Hansen (1999).

The bootstrap method proposed by Killian (1998) is as follows: first, compute the bootstrap
bias of the estimate of the autoregressive parameter of the model as: bias = p°— p where p’ is the
mean of the bootstrap LSDVC estimate p°. Second, compute a bias corrected estimate of p by
means of: p* = 2p—p’. Finally, generate B = 1999 simulated samples, {y?,, z;;}, b=1,..., B,
following the procedure described above to construct standard bootstrap confidence intervals
with the only difference that in step 2, instead of using the LSDVC estimate of p to generate
yf,t, the bias corrected estimate p* is used.

Finally, we consider the estimation of the grid bootstrap confidence intervals. First, we
need to estimate bootstrap quantiles as a function of p, ¢%(p), where ¢ is the relevant quantile
(i.e. 5 and 95%). In order to estimate these functions we first select a fine grid of values
of the autoregressive parameter, Ag = [p1, p2, ..., pc). Second, we compute ¢J(p) for each
p € Ag. Third, the grid-a (grid-t) bootstrap confidence interval is computed as the intersection
between the p— p (t-statistic) function and the ¢Z(p) and ¢J;(p) quantile functions. In practice,
to implement any of these grid bootstrap methods we construct a grid of G = 50 evenly
spaced points (p9 g = 1,...,G) spread over the interval [p £ 6s(p)], where p and s(p) are
the LSDVC estimates of the autoregressive parameter and its standard deviation respectively.

Then, generate B = 1999 simulated samples at each grid point following the procedure

13



described above to construct standard bootstrap confidence intervals with the only difference
that in step 2, for each ¢ =1, ..., G, instead of using the LSDVC estimate of p to generate yﬁt,
P9 is used (see Hansen, 1999).

Table 5 summarizes the results. Each cell of the table reports the percentage of samples in
which the true value of the parameter lies outside the estimated confidence interval. Ideally,
each of these percentages should be 0.1.

As expected, in the case of p, inference based on the asymptotic normal approximation
rejects too often the null hypothesis under consideration. In addition, the coverage of the
confidence interval based on the asymptotic normal approximation deteriorates substantially
as the true value of p increases. The standard bootstrap confidence interval provides a very
accurate coverage for low values of p, instead. However, it provides a very conservative coverage
for p = 0.8 (high values of p). The three alternative bootstrap methods perform better than the
standard bootstrap technique when p = 0.8. The bootstrap-after-bootstrap confidence interval
(Killian, 1998) rejects the null hypothesis 4.6% of the times, and even though this coverage is
still conservative, it performs better than the standard bootstrap procedure. The percentage
of samples in which the true value of the parameter lies outside of the estimated Grid-a and

Grid-t confidence intervals are 5.2 and 6.3% respectively.
Table 5 about here

For +, both the confidence interval based on the normal approximation and the standard
bootstrap estimator provide very good coverage in the cases where p = 0.2, 0.5. When p = 0.8,
however, standard asymptotic inference is misleading while the standard bootstrap technique
provides a slightly conservative coverage.

In light of the evidence presented in this section, the best alternative to assess the true
sample variability of the estimates of the parameter of model (1) in two-sided small samples
is to rely on standard bootstrap procedures when the true value of p, appraised by the point
estimate obtained by means of the LSDVC estimator, is not large; and to rely on the Grid-¢

bootstrap method when the true value of p approaches one.
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5 Empirical Application: The Wage Curve

The responsiveness of real wages to unemployment is a fundamental parameter in macroeco-
nomic analysis. A higher degree of wage flexibility implies, ceteris paribus, a lower equilibrium
unemployment rate. Early empirical work on the relationship between wages and unemploy-
ment is based on time-series data. More recently, in a very important contribution, Blanchflower
and Oswald (1994) shifted the emphasis to the use of micro data sets. They use repeated cross-
sectional data at the individual level to study the wage-unemployment relationship for several
countries. They find that in any given region, if local unemployment rises, wages fall ceteris
paribus. They have labeled this negative relationship between local wages and local unemploy-
ment, the wage curve. Moreover, they claim that the relationship between local wages and
local unemployment is static and that the unemployment elasticity of pay is approximately -0.1
for most countries. However, these two last results have been questioned. Card and Hyslop
(1997) and Blanchard and Katz (1997) present evidence which supports that regional wages
are highly persistent and also cast doubts about the degree of responsiveness of wages to local
unemployment.

Generally, the wage curve refers to the following dynamic two-way fixed effect error compo-

nent model:

Wi = PWig—1 — Vip + A + s + €5 (7)

where w;, is a measure of regional wages and w;, is a measure of regional unemployment.

Model (7) is estimated in two-steps. In the first-step, individual earnings are modeled as a
log-linear function of a set of regional dummy variables and a set of individual characteristics
including education, gender, industry affiliation and age or potential experience. In the second-
step, equation (7) is estimated using the regional dummy variables estimated in the first stage
of the analysis as the measure of regional wages (i.e., the regional expected wages).

There are two important questions associated to the parameters of model (7). First, the fact
that aggregate wages seem to be non-stationary does not imply that p equals one since the time
effects themselves may be a unit-root non-stationary process. Contrary, market equilibrium
may impose p to be strictly less than one since wages across regions must be cointegrated (see

Galiani, 1999). Hence, it is important to establish whether the true value of p is less than
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one, and, in that case, whether it is different from zero. Thus, there is interest in establishing
the type of dynamic process followed by regional wages. Second, does regional wages fall if
local unemployment increases? And, more specifically, is the unemployment elasticity of pay
—0.17 To answer these questions, it is necessary to obtain accurate estimates of both the
parameters of the model and their sample variability. In the previous section we show that the
best approach to estimate model (7) is to estimate their coefficients by means of the LSDVC
estimator and to assess their sample variability by means of standard bootstrap techniques or
the Grid-t bootstrap estimator. We now illustrate this method by estimating a wage curve for
both Argentina and the U.S.

Table 6 reports the estimate of the wage curve for the U.S. for the 1980-1991 period. We
report the estimates of the parameters of the model by means of the LSDV, GMM AB and
LSDVC estimators. In addition, in the latter case we also report 95% bootstrap confidence
intervals. The only difference in the parameter estimates is between the AB estimator and
both the LSDV and LSDVC estimators of . This is consistent with our finding that, for high
values of p and large N (as is the case in this example), all the estimators of p converges among
them. Additionally, standard inference on the AB estimate does not reject the null hypothesis
of p =1 at the 5% confidence level while this is rejected in the other cases reported in Table 6.

Figure 2 illustrates the results reported in Table 6. The dashed lines plot the 5% and
95% quantile functions of the standard bootstrap distribution of the t-statistic for the LSDVC
estimator of p, while the doted and dashed lines, constant at —1.96 and 1.96, represent the
quantile functions of the asymptotic normal approximation for the same estimator. It is clear
from the figure that these two pairs of quantile functions do not coincide, invalidating statistical
inference that relies on conventional asymptotic approximations.

Figure 2 also allow us to read confidence intervals. The solid line plots the ¢-statistic function
of the autoregressive coefficient for several values of p. The two open arrows projected from
the intersection between the solid line and the doted and dashed lines (marked by a star in the
figure) onto the p-axis give the asymptotic normal confidence interval of the parameter estimate.
The parametric percentile-t bootstrap confidence interval for the estimate of p is constructed
by evaluating the sampling ¢-statistic distribution at the estimate of p (in this case by means
of the LSDVC estimator). This interval is obtained as follows: first, the point estimate of
p (p = 0.9113), marked by a filled black circle, is projected vertically onto the 5% and 95%
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bootstrap quantile functions, with intersections marked by open diamonds. Second, these two
points are horizontally projected onto to the t-statistic function, where the intersection points
are marked by open squares. Finally, projecting these points onto the p-axis (white arrow
heads) gives the 95% percentile-t bootstrap interval [0.903, 0.974].

As Hansen (1999) points out, the percentile-t bootstrap confidence interval assumes implic-
itly that the bootstrap quantile functions are constant for any parameter value. Figure 2 shows
that this is not the case, and, in that way, it explains why the conventional bootstrap fails to
provide a correct coverage. As we show in the previous section, this confidence interval was
too conservative for large values of p. Finally, the projection of the intersections between the
bootstrap quantile functions and the t-statistic function onto the p-axis gives the 95% Grid-t

confidence interval of the estimated autoregressive coefficient.
Figure 2 about here

Table 7 reports the estimation of the wage curve for Argentina for the 1991-1997 period
using six-monthly data (i.e., T = 14). Again, we report the estimates of the parameters of the
model by means of the LSDV, GMM AB and LSDVC estimators. In addition, in the latter case
we also report 95% bootstrap confidence intervals. Now, there is a large difference between the
LSDVC and both the LSDV and AB estimates of p. This is consistent with our finding that the
estimator proposed by Kiviet (1995) performs substantially better than the other estimators
when p is not that large and N is small (as is the case in this example). The null hypothesis
of p =1 as well as the hypothesis of p = 0 are rejected. In addition, there are also important
differences among the estimates of . Furthermore, standard inference on the AB estimate does
not reject the null hypothesis of v = 0 at the 5% confidence level while this is clearly rejected
in the case of the LSDVC estimate. Evidently, we do reject that the short-run unemployment
elasticity of pay is —0.1 in all cases. However we do not reject that the long-run unemployment
elasticity of pay is —0.1 when the coefficients are estimated by means of the LSDVC estimator.
Clearly, it is invalid to test this latter hypothesis by means of standard asymptotic statistical
inference. Thus, we conduct a bootstrap test by computing the statistic of contrast of the test
for each of the 1999 bootstrap samples and by obtaining the 2.5 and 97.5 percentiles of the
distribution of this statistic. The interval delimited by these two percentiles determines the

zone of nonrejection of the null hypothesis of the test.
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Finally, Figure 3 illustrates the results reported in Table 7. In this case, the 95% Grid-t
confidence interval is included in the 95% percentile-t bootstrap interval, illustrating why, in

most cases, the former confidence interval gives a better coverage than the latter one.

Figure 3 about here

6 Conclusions

In this paper we study the inference and estimation of dynamic panel data models in a special
and increasingly important class of small samples that we denoted two-sided small samples
(i.e., panels where the time dimension (7") is larger than a single-digit number but where the
cross-section dimension () is not that large neither). We study the finite-sample properties
of the most important methods of estimation proposed in the literature. Our main results are
the following;:

Even though one may have expected the LSDV estimator to perform well in samples where
T is large, the bias of the fixed effect estimator was sizeable, even for T" = 30 when N = 50.
This result demonstrates the poor performance of this estimator in two-sided small samples.
Thus, it is invalid to use it in most of the panel data sets available.

The LSDVC estimator proposed by Kiviet (1995) performs much better than all other
estimators considered in the literature both in terms of bias reduction and by the RMSE
criteria. This estimator is quite accurate and, hence, must be the one adopted to estimate
dynamic panel data models in small samples.

The GMM estimator proposed by Blundell and Bond (1998) performs better than the one
developed by Arellano and Bond (1991) in terms of bias reduction and by the RMSE criteria.
However, the difference between them is only significant for low values of the autoregressive
coefficient (p), contradicting the well-established result which shows that the system estimator
is more accurate when p is large in samples where 7T is a single-digit number and N is very
large.

More importantly, we find that standard inference is not valid for any of the estimators and
data generating process considered in this paper. We find that for all the estimators studied, the
true size of t-type tests may differ substantially from their asymptotic nominal level although

the way they depart from this asymptotic approximation vary among them. Interestingly, this
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result holds for p as well as for the true value of the coefficient associated to the exogenous
variable (7). Surprisingly, this result also holds for the null hypothesis v = 0 and, but not
necessarily, when the dependent and exogenous explanatory variables are correlated in the
DGP. Indeed, in our application to the U.S. data, where N is reasonable large (N = 51), we
find that the main bias in the GMM estimates occur in the case of v, where the coefficient
estimated by LSDVC is 60% higher than the one estimated by means of the AB estimator. In
the application to the Argentine data, where N is not large (N = 17), we find that the GMM
estimates of both coefficients are substantially biased downward. In this case, based on the
GMM estimate and standard statistical inference we do not reject the null hypothesis of no
impact of local unemployment on local wages, contradicting a standard finding of the literature
and what is know about wages and unemployment in Argentina during the period studied.
Consequently, irrespective of which estimator performs better in terms of bias reduction and
RMSE in the class of small samples we study, it is necessary to consider also the finite sample
behavior of t-type tests in order to conduct valid statistical inference.

Thus, the evidence presented in this paper shows that the LSDVC estimator must be pre-
ferred for estimating the parameters of a dynamic panel data model in two-sided small panels.
However, it also shows that standard statistical inference is misleading and, hence, bootstrap
standard errors have to be computed to conduct valid statistical inference on the parameters
of this model.

Finally, we find that standard bootstrap techniques work well except when the autoregressive
parameter in the model is close to one. In this case we find that the Grid-t bootstrap estimator
due to Hansen (1999) outperforms any other alternative to estimate the standard errors of the
estimates of the parameters of dynamic panel data models in two-sided small samples. Thus,
we recommend to estimate the parameters of the model by means of the estimator proposed by
Kiviet (1995) and to assess their sample variability by means of standard bootstrap procedures
when the true value of p, appraised by the point estimate of it, is not large; and to rely on the

Grid-t bootstrap method due to Hansen (1999) when the true value of p approaches one.
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Table 1: Monte Carlo Design. 45 different parameter combinations.

Case T N p | Case T N p | Case T N p v

I 20 30 0.2 0| XVI 20 30 0.2 1| XXXI 20 30 0.2 -1
IT 20 30 0.5 0| XVII 20 30 0.5 1 | XXXII 20 30 05 -1
11 20 30 0.8 O |XVIII 20 30 08 1 |XXXII 20 30 08 -1
v 30 30 0.2 0 |XIX 30 30 0.2 1|XXXIV 30 30 0.2 -1
\Y 30 30 0.5 0|XX 30 30 0.5 1| XXXV 30 30 05 -1
VI 30 30 0.8 0| XXI 30 30 0.8 1 |XXXXVI 30 30 0.8 -1
VII. 20 50 0.2 0| XXII 20 50 0.2 1| XXXVII 20 50 0.2 -1
VIIT 20 50 0.5 0] XXIIIT 20 50 0.5 1 |XXXVIIT 20 50 0.5 -1
IX 20 50 0.8 0| XXIV 20 50 08 1| XXXIX 20 50 08 -1
X 30 50 0.2 0| XXV 30 50 0.2 1 |XL 30 50 0.2 -1
XI 30 50 0.5 0 |XXVI 30 50 0.5 1| XLI 30 50 0.5 -1
XIT 30 50 0.8 0] XXVII 30 50 0.8 1| XLII 30 50 0.8 -1
XIII 40 50 0.2 0] XXVIII 40 50 0.2 1 | XLIII 40 50 0.2 -1
XIV 40 50 0.5 0| XXIX 40 50 0.5 1| XLIV 40 50 0.5 -1
XV 40 50 0.8 0| XXX 40 50 0.8 1| XLV 40 50 0.8 -1
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Table 2: Monte Carlo Results.

% Bias RMSE % Bias RMSE

P v P v P v p v

I FE 33.94 0.84 0.080 0.039 | XIII FE 1449 0.32 0.036 0.018
K 116 079 0.045 0.038 K 130 0.33 0.023 0.017

AB 2315 1.19 0.070 0.054 AB 11.78 0.08 0.034 0.022

BB 1649 1.18 0.061 0.055 BB 807 0.22 0.030 0.023

11 FE 1750 0.82 0.096 0.040 | XIV FE 755 0.33 0.042 0.018
K 057 076 0.044 0.038 K 052 036 0020 0.018

AB 14.23 135 0.091 0.054 AB  6.60 0.14 0.041 0.023

BB 1095 1.39 0.077 0.055 BB 505 0.23 0.036 0.023

111 FE 1421 0.71 0.118 0.040 | XV FE 621 0.34 0.052 0.019
K 243 0.64 0.045 0.039 K 026 040 0.016 0.018

AB 16.71 145 0.147 0.054 AB  6.78 0.21 0.059 0.024

BB 1320 1.49 0.120 0.056 BB 571 0.26 0.051 0.025

XVI FE 1630 1.72 0.042 0.044 | XXVII FE 7.31 0.97 0.021 0.023
K 117 0.61 0.027 0.041 K 009 033 0015 0.021

AB 1233 094 0.043 0.055 AB 814 146 0.024 0.028

BB 10.57 1.07 0.042 0.057 BB 695 1.36 0.023 0.028

XVII FE 576 1.99 0.035 0.046 | XXIX FE 260 121 0.017 0.025
K 038 060 0021 0.042 K 006 028 0.012 0.022

AB 501 1.21 0.042 0.057 AB  3.08 1.77 0.021 0.031

BB 4.88 1.54 0.041 0.059 BB 3.0l 1.87 0.021 0.032

XVII FE 254 156 0.024 0.043 | XXX FE 104 1.05 0.010 0.023
K 007 0.00 0019 0.046 K 007 022 0.006 0.021

AB 275 045 0.032 0.050 AB 128 1.33 0.014 0.027

BB 252 0.60 0.031 0.053 BB 126 1.28 0.014 0.029

XXXI FE 1450 3.07 0.041 0.054 | XLIII FE 6.36 1.42 0.021 0.027
K 032 074 0030 0.045 K 112 012 0.017 0.023

AB 14.65 3.27 0.049 0.064 AB  6.06 1.30 0.023 0.028

BB 12.95 3.49 0.048 0.065 BB 509 1.32 0.022 0.028

XXXII FE 499 323 0.033 0053 | XLIV FE 218 158 0.016 0.028
K 030 064 0022 0.043 K 038 009 0012 0.023

AB 577 346 0.043 0.063 AB 234 140 0.018 0.029

BB 580 3.88 0.044 0.065 BB 226 1.66 0.019 0.031
XXXIII FE 1.99 262 0.020 0.047 | XLV FE 083 1.38 0.009 0.025
K 132 096 0.023 0.047 K 016 0.12 0.006 0.020

AB 251 220 0.028 0.054 AB 089 1.20 0.011 0.025

BB 237 212 0.028 0.055 BB 089 1.16 0.011 0.026

Note: 100 replications. Percentage bias is presented in absolute value.




Table 3: Monte Carlo Results. t-statistic for g

FE K AB BB FE K AB BB

I 1% —4.12 —-197 —-4.22 -7.04 | X1II 1%  —4.05 -1.92 —-4.02 —5.77
5% —3.40 -—143 -3.16 —4.74 5% —-3.15 —-1.25 —273 —4.33

10% -3.01 -1.08 —2.74 —4.10 10% —2.38 —0.74 —2.06 —3.47

90% —0.45 0.85 0.31 0.98 90% —0.23 0.87 0.21 1.02

95% —0.25 1.10 0.76 1.62 95% 0.41 1.35 0.78 1.80

99% 0.13 1.29 1.18 2.62 99% 0.64 1.47 1.66 3.48

II 1% —4.63 —-1.89 —4.60 -—7.46 | XIV 1% —-4.61 —-196 —4.81 -—7.11
5%  —3.92 —147 -3.66 —5.59 5% —3.53 —1.14 —-3.35 —4.68

10% —-3.62 —-1.12 -3.07 —4.70 10% —2.88 —0.65 —2.72 —4.07

90% —1.05 0.90 —-0.09 0.34 90% —0.84 0.83 —0.12 0.36

95% —0.75 1.04 0.28 0.99 95% —0.32 1.26 0.09 1.15

99% —0.52 1.45 0.63 1.36 99% 0.15 1.60 1.28 2.77

III 1% —-595 —-291 -586 —8.19 | XV 1% —-5.89 —2.15 —-5.04 —7.91
5% —5.39 —2.06 —4.78 —7.26 5%  —4.82 —-1.19 —-4.80 —6.25

10% —4.93 —-1.69 —4.10 —6.00 10% —4.45 —-0.89 —4.14 —6.02

90% —2.63 0.66 —-1.15 —1.34 90% —2.28 097 —-141 -1.38

9%5% —2.36 094 -1.04 -0.90 9%5% —1.95 1.14 -0.62 -0.31

9% —1.77 1.08 —-0.53 —0.53 99% —1.27 1.85 —0.39 0.62

XVI 1% —-361 —-1.84 -324 —4.82 | XXVII 1% —-4.19 -231 —4.13 -6.37
5%  —2.68 —1.22 —242 -—-3.67 5% —298 —145 —2.47 —4.06

10% —2.35 —-0.89 —2.03 —3.00 10% —2.08 —-0.82 —2.02 -3.11

90% 0.01 0.77 0.48 0.83 90% 0.18 0.80 0.43 0.84

95% 0.25 0.91 0.68 1.98 95% 0.30 0.91 0.69 1.42

99% 0.72 1.41 1.56 2.31 99% 0.98 1.37 1.58 2.12

XVII 1% -360 —-1.66 —3.52 —4.88 | XXIX 1% —4.45 —-237 -3.93 —5.89
5% —2.79 —-1.13 -265 -3.94 5% —2.84 -—1.28 —2.78 —4.40

10% —2.53 —0.90 —-2.26 —3.23 10% —244 -0.94 -2.14 -3.29

90% —0.05 0.86 0.02 0.78 90% 0.10 0.86 0.21 0.22

95% 0.18 1.10 0.03 1.29 95% 0.34 1.05 0.36 0.60

99% 0.50 1.25 0.05 2.61 99% 0.68 1.35 0.89 1.41

XVIII 1% —-429 -1.89 —-443 —6.26 | XXX 1% —4.63 -231 —-421 -591
5% —3.35 —1.46 —2.89 —4.19 5% —3.17 -1.29 —-3.61 —547

10% —2.95 —-1.17 -236 —3.51 10% -2.71 -1.03 —2.67 —3.96

90% —0.45 0.92 0.17 0.41 90% —0.12 0.86 —0.01 0.12

95% —0.29 1.76 0.34 0.65 95% 0.16 1.18 0.58 0.97

99% 0.06 3.28 1.65 2.81 99% 0.40 1.35 1.03 1.56

Note: 100 replications. Percentage bias is presented in absolute value. The 1th, 5th, 10th,
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 3: Monte Carlo Results. t-statistic for j (Cont.)

FE K AB BB FE K AB BB

XXXI 1% —-4.02 -2.15 —4.07 —6.45 | XLIII 1% -3.57 -—1.82 =327 —4.89
5% —2.86 -—1.27 —2.42 —4.27 5% -2.69 —-122 -236 —-3.43

10% —2.44 -1.04 —-2.11 —3.48 10% —-2.35 —-1.02 -1.95 -3.01

90% 0.25 0.92 0.67 1.14 90% 0.59 1.11 0.64 1.41

95% 0.41 1.06 0.88 1.60 95% 0.92 1.36 0.79 1.91

99% 1.03 1.50 1.16 2.95 99% 1.22 1.56 1.70 2.53

XXX 1%  -399 -197 -3.55 =595 | XLIV 1% -3.45 —-161 —-3.85 —5.13
5% —2.90 -1.11 -2.62 —4.29 5% -270 -113 -3.29 -5.08

10% —2.59 —-0.96 —2.29 —3.83 10% —2.24 —-0.85 —1.94 —3.17

90% —0.01 0.85 0.44 0.80 90% 0.42 1.09 0.08 0.22

95% 0.18 1.02 0.59 1.23 95% 0.60 1.25 0.32 0.43

99% 0.83 1.50 1.12 1.63 99% 1.07 1.60 0.41 0.65

XXX 1% —3.45 —-220 —-2.88 —-4.79 | XLV 1% -3.70 —-1.66 —3.47 -—5.16
5% —2.75 -091 -2.60 -3.61 5% -2.89 —-1.17 -—-243 -3.75

10% —2.40 —-0.57 —-2.18 —3.43 10% —-249 -0.89 -2.26 —3.21

90% —0.05 1.94 0.22 0.50 90% 0.42 1.34 0.36 0.66

95% 0.10 3.06 0.48 0.97 95% 0.67 1.47 0.93 1.16

99% 0.97 3.97 1.13 1.53 99% 0.89 1.59 1.32 1.90

Note: 100 replications. Percentage bias is presented in absolute value. The 1th, 5th, 10th,
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 4: Monte Carlo Results. t-statistic for 4

FE K AB BB FE K AB BB

I 1%  —3.67 —243 -—-3.05 —4.86 | XIII 1% —-262 -1.89 -—-1.78 —2.66
5%  —2.13 —1.45 —2.27 -3.32 5%  —1.75 —1.22 —1.47 -—-2.20

10% —-1.89 —-1.26 —1.64 —2.55 10% -149 -1.03 -1.23 -1.90

90% 1.19 0.76 0.90 1.33 90% 1.10 0.71 1.29 1.76

95% 1.43 0.87 1.28 1.88 95% 1.25 0.84 1.49 2.27

99% 2.40 1.38 1.67 2.56 99% 1.78 1.24 1.97 2.84

II 1% =372 —-239 -3.04 —4.55 | XIV 1% —2.76 —-2.01 -1.83 —2.82
5%  —2.15 —1.54 —-225 —-3.37 5% —-1.75 —-123 —-152 —-230

10% —-1.81 —-1.26 -1.76 —2.61 10% —-152 —-1.03 -1.24 —1.92

90% 1.16 0.83 0.89 1.34 90% 1.11 0.71 1.32 1.68

95% 1.41 0.89 1.28 1.80 95% 1.25 0.87 1.47 2.30

99% 2.06 1.37 1.59 2.19 99% 1.82 1.26 2.15 3.12

III 1% =390 —292 -332 —4.93 | XV 1% -3.09 —-227 -195 -2.94
5% —2.33 —-1.50 —2.10 -3.50 5% —1.86 —-1.30 —1.80 —2.25

10% —-1.73 —-1.23 —1.79 —2.57 10% —-1.55 —1.06 —1.23 —2.01

90% 1.26 0.91 0.99 1.69 90% 1.15 0.71 1.25 1.61

95% 1.66 1.15 1.30 1.84 95% 1.38 0.95 1.63 2.39

99% 1.97 1.42 1.66 2.45 99% 1.99 1.35 2.20 3.08

XVI 1% —-259 —223 -218 —-3.40 | XXVII 1% -1.76 -1.66 —1.48 -—2.27
5%  —1.17 —-1.25 —-1.83 —-2.75 5% —1.16 —-1.23 —-1.02 -1.50

10% —-0.91 —1.04 —-1.47 -2.02 10% -0.77 —-0.98 —0.55 —0.85

90% 1.62 0.74 1.40 2.00 90% 1.87 0.92 1.57 2.13

95% 1.79 0.89 1.56 2.47 95% 2.13 1.08 2.16 2.85

99% 2.09 1.08 2.17 3.11 99% 2.73 1.49 2.24 3.32

XVII 1% -2.719 —-243 -239 —4.03 | XXIX 1% -199 —-191 —-1.68 —2.52
5% —1.06 -1.24 —-1.81 —2.89 5% —-1.00 -1.19 -0.92 -1.42

10% —-0.80 —1.04 —-1.39 —2.28 10% —-0.62 —-0.93 -0.39 —0.69

90% 1.73 0.78 1.49 2.35 90% 2.07 1.01 1.79 2.79

95% 1.97 0.93 1.94 2.55 95% 2.42 1.24 2.22 3.13

99% 2.32 1.21 2.14 3.22 99% 2.69 1.43 2.38 3.48

XVIr 1%  -3.21 -268 -291 —5.17 | XXX 1% —-2.00 -1.90 -1.76 —2.96
5% —1.16 —-129 —-1.90 -3.01 5% —1.07 -1.19 -0.88 -—-2.07

10% —-0.99 —-1.10 -—-1.53 —2.27 10% —-0.82 —-1.05 —-0.72 —1.63

90% 1.68 1.01 1.31 2.25 90% 1.91 0.84 1.94 3.05

95% 1.99 1.39 1.50 2.76 95% 2.11 1.07 2.22 3.46

99% 2.42 2.13 2.21 3.60 99% 2.74 1.50 2.52 4.82

Note: 100 replications. Percentage bias is presented in absolute value. The 1th, 5th, 10th,
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 4: Monte Carlo Results. t-statistic for 4 (Cont.)

FE K AB BB FE K AB BB

XXXI 1% -3.73 —-223 -3.61 —5.38 | XLIII 1% —-2.78 —1.55 —2.28 —3.58
5% —293 -1.65 —-294 -3.95 5% -241 -1.30 -2.06 —2.80

10% -2.06 —1.04 —-2.29 —3.32 10% —2.13 —-1.09 -1.70 —2.47

90% 0.58 0.80 0.58 0.95 90% 0.75 0.95 0.67 0.91

95% 1.00 1.10 0.82 1.14 95% 1.07 1.18 1.11 1.29

99% 1.29 1.33 1.34 1.97 99% 1.62 1.57 1.46 2.24

XXX 1% -3.88 —228 —3.49 -5.10 | XLIV 1% —294 -163 —-2.60 —4.31
5% —2.85 -—1.60 —3.03 —4.14 5% —246 -124 -193 -3.13

10% —2.35 —-1.19 —-2.05 —2.96 10% —2.07 —-0.98 —-1.75 —2.65

90% 0.43 0.85 0.52 0.67 90% 0.58 0.90 0.53 0.84

95% 0.76 1.03 0.83 1.17 95% 0.82 1.27 1.38 1.98

99% 1.27 1.38 1.30 2.15 99% 1.51 1.56 1.22 1.69

XXX 1% —4.15 -2.71 -3.83 —6.14 | XLV 1% -320 -185 —-296 —5.32
5%  —247 -1.718 —2.48 —3.59 5% -2.19 -1.12 -2.01 -2.97

10% —2.13 -1.18 -1.90 —2.98 10% —2.01 -0.99 -1.69 -—2.71

90% 0.55 0.90 0.81 1.33 90% 0.59 0.87 0.64 1.29

95% 1.05 1.20 1.37 2.39 95% 1.23 1.34 1.08 1.74

99% 1.28 1.36 1.66 2.77 99% 1.65 1.63 1.42 2.65

Note: 100 replications. Percentage bias is presented in absolute value. The 1th, 5th, 10th,
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 5: Monte Carlo Design. 90% Confidence Level Intervals.

p 02 0.5 0.8
Asymptotic 0.138 0.197 0.408
Percentile-t 0.104 0.115 0.036

Kilian 0.046

Grid-«a 0.052

Grid-t 0.063
v 1 1 1

Asymptotic 0.098 0.115 0.168
Percentile-t 0.116 0.113 0.071

Table 6. The Wage Curve: U.S. States, 1980-1991

Dependent variable = Log State Wage (w;;)

LSDV GMM (AB) LSDVC
Lagged log wage (w;;_1) 0.9054 0.9095 0.9113
Standard Inference (0.871, 0.939) (0.814, 1.004) (0.875, 0.948)
Standard Bootstrap (0.903, 0.974)
Kilian Bias-Corrected (0.901, 0.951)
Grid-a (0.903, 0.965)
Grid-t (0.899, 0.998)
Log unemployment rate (u;) —0.0417 —0.0296 —0.0477
Standard Inference (—0.049, —0.035) (—0.041, —0.018) (—0.055, —0.040)
Standard Bootstrap (—0.048, —0.032)
State Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes

Notes: 1. All regressions contain 612 observations (51 states over 12 years) for the period 1980 to 1991.
Wages and individual controls are from the Merged Outgoing Rotation Group Files of CPS. Wages are
earnings per hour. We restrict the sample only to employee workers. Unemployment is the state
unemployment rate.

2. Figures in parentheses are 95% confidence intervals.
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Table 7. The Wage Curve: Argentine Regions, 1991-1997

Dependent variable = Log Region Wage (w;;)

LSDV GMM (AB) LSDVC
Lagged log wage (w;;_1) 0.5327 0.5698 0.6877
Standard Inference (0.424, 0.641) (0.406, 0.734) (0.582, 0.794)
Standard Bootstrap (0.481, 0.731)
Kilian Bias-Corrected (0.537, 0.712)
Grid-a (0.558, 0.709)
Grid-t (0.538, 0.704)
Log unemployment rate (u;) —0.0314 —0.0270 —0.0485
Standard Inference (—0.059, —0.004) (—0.059, 0.005) (—0.076, —0.021)
Standard Bootstrap (—0.076, —0.023)
Region Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes

Notes: 1. All regressions contain 238 observations (17 regions over 14 semester) for the period 1991 to 1997.
Wages and individual controls are from the Permanent Household Survey conducted by INDEC. Wages are
earnings per hour. We restrict the sample only to employee workers. Unemployment is the regional
unemployment rate for males.

2. Figures in parentheses are 95% confidence intervals.
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Annex

Table 2.A: Monte Carlo Results.

% Bias RMSE % Bias RMSE
p v p v p v P v
I FE 3394 0.84 0.080 0.039 | VIII FE 1593 0.34 0.087 0.029
K 1.16 0.79 0.045 0.038 K 0.70 0.41 0.037 0.027
AB 23.15 1.19 0.070 0.054 AB 886 0.41 0.062 0.043
BB 16.49 1.18 0.061 0.055 BB 654 0.64 0.065 0.046
II FE 17.50 0.82 0.096 0.040 | IX FE 13.66 0.24 0.113 0.031
K 0.57 0.76 0.044 0.038 K 0.85 0.34 0.038 0.029
AB 14.23 1.35 0.091 0.054 AB 11.90 0.23 0.110 0.047
BB 10.95 1.39 0.077 0.055 BB 9.20 0.29 0.089 0.048
IIT FE 14.21 0.71 0.118 0.040 | X FE 19.48 0.05 0.047 0.025
K 243 0.64 0.045 0.039 K 1.73 0.32 0.028 0.021
AB 16.71 1.45 0.147 0.054 AB 13.38 0.01 0.043 0.030
BB 13.20 1.49 0.120 0.056 BB 12.45 0.18 0.039 0.031
IV FE 2346 0.81 0.059 0.032 | XI FE 10.14 0.32 0.057 0.022
K 1.96 0.78 0.038 0.031 K 0.74 036 0.027 0.021
AB 2277 0.81 0.060 0.040 AB 7.20 0.03 0.048 0.031
BB 16.23 0.84 0.051 0.042 BB 546 0.16 0.042 0.032
\Y% FE 12.01 0.81 0.069 0.032 | XII FE 853 032 0.071 0.023
K 099 0.76 0.036 0.031 K 0.32 0.38 0.024 0.022
AB 1248 0.89 0.073 0.041 AB 840 0.10 0.075 0.032
BB 983 0.81 0.063 0.042 BB 681 0.16 0.063 0.033
VI FE 943 075 0.079 0.033 | XIII FE 1449 0.32 0.036 0.018
K 1.31 0.69 0.031 0.032 K 1.30 0.33 0.023 0.017
AB 1197 0.92 0.103 0.042 AB 11.78 0.08 0.034 0.022
BB 10.17 0.95 0.090 0.043 BB 807 0.22 0.030 0.023
VII FE 30.65 0.36 0.070 0.028 | XIV FE 7.55 0.33 0.042 0.018
K 1.53 0.40 0.037 0.027 K 0.52 0.36 0.020 0.018
AB 14.49 0.07 0.050 0.046 AB 6.60 0.14 0.041 0.023
BB 11.13 0.28 0.046 0.047 BB 505 0.23 0.036 0.023

Note: 100 replications. Percentage bias is presented in absolute value.
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Table 2.A: Monte Carlo Results (Continuation).

% Bias | RMSE %Bias | RMSE

P v g P 7P g

XV FE 621 034 0052 0019 | XXII FE 1546 221 0.038 0.041
K 026 040 0016 0.018 K 005 035 0022 0035

AB 678 021 0.059 0.024 AB 925 069 0043 0.047

BB 571 026 0.051 0.025 BB 684 051 0.041 0.047
XVI FE 1630 1.72 0042 0044 | XXIII FE 537 248 0.031 0.043
K 117 061 0.027 0.041 K 018 042 0017 0.036

AB 1233 094 0.043 0.055 AB 399 206 0.034 0.049

BB 1057 1.07 0.042 0.057 BB 401 219 0.034 0.051
XVII FE 576 199 0035 0046 | XXIV ~FE 244 189 0022 0.037
K 038 060 0021 0.042 K 033 036 0011 0033

AB 501 121 0.042 0.057 AB  1.82 077 0.024 0.039

BB 488 154 0.041 0.059 BB 165 045 0.024 0.042
XVII FE 254 156 0024 0043 [ XXV~ FE 953 136 0.026 0.030
K 007 000 0019 0.046 K 045 038 0018 0.027

AB 275 045 0.032 0.050 AB 847 167 0.028 0.036

BB 252 0.60 0.031 0.053 BB 734 1.60 0027 0.037
XIX FE 1229 122 0034 0037 | XXVI FE 335 162 0021 0.032
K 220 042 0.024 0.036 K 007 035 0014 0028

AB 1224 133 0.037 0.047 AB 325 195 0.025 0.039

BB 1032 125 0.036 0.048 BB 319 207 0.025 0.041

XX FE 432 145 0028 0038 | XXVII FE 141 140 0.013 0.029
K 081 035 0018 0036 K 003 024 0007 0.025

AB 462 159 0077 0.047 AB 142 144 0017 0.034

BB 447 172 0.069 0.049 BB 136 1.38 0.016 0.036
XXI FE 176 0.95 0017 0034 | XXVII FE 731 097 0021 0.023
K 027 040 0010 0033 K 009 033 0015 0.021

AB 216 0.76 0.022 0.040 AB 814 146 0.024 0.028

BB 212 0.72 0.022 0.041 BB 695 1.36 0.023 0.028

Note: 100 replications. Percentage bias is presented in absolute value.
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Table 2.A: Monte Carlo Results (Continuation).

% Bias | RMSE %Bias | RMSE
P v g P 7 g
XXIX FE 260 121 0017 0025 | XXXVII FE 13.79 263 0.038 0.044
K 006 028 0012 0.022 K 191 006 0028 0.036
AB 308 177 0.021 0.031 AB 814 143 0037 0.048
BB 3.0l 187 0.021 0.032 BB 675 150 0.035 0.048
XXX  FE 1.04 105 0010 0023 | XXXVIII FE 498 295 0.032 0.046
K 007 022 0006 0.021 K 062 004 0021 0036
AB 128 133 0.014 0.027 AB 351 183 0033 0.050
BB 126 128 0.014 0.029 BB 322 197 0.032 0.051
XXXI FE 1450 3.07 0041 0.054 [ XXXIX FE 228 238 0021 0.040
K 032 074 0030 0045 K 058 019 0015 0.032
AB 1465 327 0.049 0.064 AB 197 132 0.022 0.044
BB 1295 349 0.048 0.065 BB 171 128 0.022 0.045
XXXII FE 499 323 0033 0053 | XL FE 880 184 002 0.033
K 030 064 0022 0.043 K 129 009 0019 0028
AB 577 346 0.043 0.063 AB 723 128 0027 0.034
BB 580 3.88 0.044 0.065 BB 580 133 0.027 0.035
XXXIII FE 1.99 262 0.020 0.047 [ XLI FE 300 202 0020 0.034
K 132 096 0023 0.047 K 047 005 0014 0.027
AB 251 220 0.028 0.054 AB 278 154 0022 0.035
BB 237 212 0.028 0.055 BB 265 1.68 0.023 0.036
XXXIV FE 949 236 0.032 0.044 | XLII FE 116 170 0.012 0.030
K 042 0.72 0.026 0.038 K 025 005 0008 0.025
AB 1297 321 0.039 0.053 AB 113 1.04 0013 0.030
BB 11.86 3.31 0.037 0.053 BB 111 104 0013 0.033
XXXV FE 314 243 0025 0.044 | XLIII FE 636 142 0021 0.027
K 020 063 0019 0.037 K 112 012 0017 0.023
AB 458 330 0.033 0.052 AB 606 1.30 0.023 0.028
BB 4.73 355 0.034 0.054 BB 509 132 0.022 0.028
XXXVI FE 1.09 187 0.013 0.037 | XLIV FE 218 158 0016 0.028
K 035 051 0010 0033 K 038 009 0012 0023
AB 173 211 0.019 0.041 AB 234 140 0.018 0.029
BB 177 195 0.020 0.041 BB 226 1.66 0.019 0.031
XLV FE 083 138 0.009 0.025
K 016 0.2 0.006 0.020
AB 089 120 0011 0.025
BB 089 116 0011 0.026

Note: 100 replications. Percentage bias is presented in absolute value.
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Table 3.A: Monte Carlo Results. t-statistic for p

FE K AB BB FE K AB BB

I 1% —412 -1.97 —-4.22 -7.04 | VI 1% —-5.19 —-231 -582 —8.62
5% —3.40 —143 —-3.16 —4.74 5% —4.95 -—-1.76 —4.98 —7.07

10% —3.01 —-1.08 —2.74 —4.10 10% —4.61 —-1.56 —4.63 —6.34

90% —0.45 0.85 0.31 0.98 90% —2.09 0.78 —-1.73 -2.13

95% —0.25 1.10 0.76 1.62 95% —1.66 0.87 —-1.42 —1.58

99% 0.13 1.29 1.18 2.62 99% —1.33 1.69 —0.48 0.02

Im 1% -463 -1.89 —-460 -746|VII 1% —4.70 -2.12 —-3.97 -5.87
5%  —3.92 —1.47 -3.66 —5.59 5% —3.61 —1.33 —2.68 —4.34

10% -3.62 —-1.12 -3.07 —4.70 10% —2.97 -0.83 —2.04 -3.71

90% —1.05 0.90 -0.09 0.34 90% —0.37 1.13 0.52 1.52

95% —0.75 1.04 0.28 0.99 95% —0.11 1.39 1.01 1.97

99% —0.52 1.45 0.63 1.36 99% 0.47 1.81 1.24 2.76

Im 1% -595 -291 -586 —819 | VIII 1% —5.46 —223 —4.71 -7.07
5%  —5.39 —2.06 —4.78 —7.26 5%  —4.61 —-1.48 -3.33 —5.30

10% —-4.93 -1.69 —4.10 —6.00 10% —3.84 —-0.88 —2.55 —3.61

90% —2.63 0.66 —-1.15 —1.34 90% —1.13 1.22 0.14 0.62

9%5% —2.36 094 -1.04 -0.90 95% —0.75 1.61 0.27 1.53

9% —1.77 1.08 —-0.53 —0.53 99% —0.16 2.00 0.78 2.23

v 1% —-426 -223 -425 -6.33 |1X 1% —6.88 —2.77 -521 —8.05
5% —3.24 -—150 —-3.32 —4.54 5% —6.37 —-223 -3.92 —6.07

10% —2.67 —-1.01 —-251 —3.85 10% —6.10 —-1.51 —-3.75 —5.43

90% —0.17 0.86 —0.10 0.70 90% —3.07 1.30 —-0.63 —0.90

95% 0.06 0.99 0.39 1.28 95% —2.60 1.57 —0.10 0.50

99% 1.13 1.80 1.46 2.84 99% —2.15 1.99 0.65 1.66

vV 1% —-451 —-2.09 -485 -7.17|X 1% —448 —2.14 —4.45 —6.06
5% —-3.93 -1.59 -3.79 -5.93 5% —3.28 -—-1.25 —2.66 —4.23

10% —-340 -1.22 -3.31 —4.63 10% —2.80 —-0.92 -225 —3.56

90% —0.80 0.73 —-084 —-041 90% —0.38 0.88 0.16 1.00

95% —0.55 0.90 -0.41 0.36 95% 0.26 1.32 0.65 1.84

99% 0.51 1.88 0.81 1.99 99% 0.82 1.78 1.37 2.54

Note: 100 replications. Percentage bias is é)rebented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantlles for the standard normal distribution are, respectively, —2.32,
~1.64, —128 1.28, 1.64 and 2.32.
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Table 3.A: Monte Carlo Results. t-statistic for p (Cont.)

FE K AB BB FE K AB BB

XI 1%  —4.77 —-199 —4.76 -—7.39 | XVI 1% —3.61 —1.84 -3.24 —4.82
5%  —4.11 —-1.41 -3.13 —4.68 5%  —2.68 —1.22 —242 —-3.67

10% —-3.54 —-0.96 —2.69 —4.16 10% —2.35 —-0.89 —2.03 —3.00

90% —0.87 1.06 —0.08 0.29 90% 0.01 0.77 0.48 0.83

95% —0.40 1.40 0.51 1.26 95% 0.25 0.91 0.68 1.98

99% 0.19 1.86 1.33 2.13 99% 0.72 1.41 1.56 2.31

XIr 1% —-6.34 —-220 —-495 —7.89 | XVII 1% —-3.60 —-1.66 —3.52 —4.88
5%  —5.48 —146 —4.43 -6.27 5% —-2.79 -1.13 -265 —-3.94

10% —5.08 —1.03 —4.14 —5.73 10% —-2.53 —0.90 —-2.26 —3.23

90% —2.46 1.19 -096 -—-1.14 90% —0.05 0.86 0.02 0.78

9%5% —2.26 143 -0.64 —-0.12 95% 0.18 1.10 0.03 1.29

99% —1.40 2.80 —0.12 0.38 99% 0.50 1.25 0.05 2.61

Xr 1%  —4.05 -1.92 —4.02 577 | XVIII 1% —429 —-189 —443 —6.26
5% —-3.15 —-1.25 —273 —4.33 5% —3.35 —1.46 —2.89 —4.19

10% —2.38 —0.74 —2.06 —3.47 10% —2.95 —-1.17 -236 —3.51

90% —0.23 0.87 0.21 1.02 90% —0.45 0.92 0.17 0.41

95% 0.41 1.35 0.78 1.80 95% —0.29 1.76 0.34 0.65

99% 0.64 1.47 1.66 3.48 99% 0.06 3.28 1.65 2.81

XIv 1% —-461 -1.96 —-4.81 -7.11 | XIX 1% —411 -230 -3.70 —6.22
5% —3.53 —1.14 —-3.35 —4.68 5% —2.74 -1.36 —3.08 —4.22

10% —2.88 —0.65 —2.72 —4.07 10% —-2.56 —1.21 —2.35 —3.48

90% —0.84 0.83 —0.12 0.36 90% —0.03 0.60 0.13 0.70

95% —0.32 1.26 0.09 1.15 95% 0.14 0.70 0.52 1.73

99% 0.15 1.60 1.28 2.77 99% 1.01 1.36 1.62 2.72

Xv 1% -5.89 -215 -5.04 -791 | XX 1% —-3.66 —1.84 -3.36 —5.59
5%  —4.82 —-1.19 —-4.80 —6.25 5%  —-3.15 —1.47 -3.10 —-4.71

10% —4.45 —-0.89 —4.14 —6.02 10% —-2.81 —-1.30 —2.66 —4.16

90% —2.28 097 -141 —-1.38 90% —0.09 0.71 0.27 0.31

9%5% —1.95 1.14 -0.62 —-0.31 95% 0.19 0.84 0.48 1.06

99% —1.27 1.85 —0.39 0.62 99% 0.60 1.15 1.17 241

Note: 100 replications. Percentage bias is é)resented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 3.A: Monte Carlo Results. t-statistic for p (Cont.)

FE K AB BB FE K AB BB

XXI 1%  —4.37 —2.25 =379 —5.87 | XXVI 1% —4.24 -2.07 —-421 -6.35
5%  —3.24 —1.48 -3.15 —4.67 5%  —3.27 —1.41 —-275 —-3.68

10% —2.96 —-1.27 -—2.61 —3.66 10% —2.44 —-0.89 —2.28 —2.98

90% —0.38 0.65 0.11 0.07 90% —0.07 0.88 0.30 0.41

95% —0.18 0.82 0.27 0.64 95% 0.20 1.11 0.71 0.98

99% 0.36 1.39 0.77 1.64 99% 0.74 1.45 1.87 2.23

XXII 1%  —4.43 —-232 -335 —4.89 | XXVII 1% —4.10 -1.90 —-4.03 —5.72
5% —2.81 -1.04 -3.25 —4.79 5%  —3.27 -1.13 -—-3.21 -—4.35

10% —2.50 —0.90 -3.03 —4.18 10% —2.90 —-0.94 -259 —3.41

90% —0.17 0.89 0.71 1.56 90% —0.27 1.02 0.16 0.46

95% —0.05 1.00 1.29 1.95 95% 0.02 1.12 0.68 1.21

99% 0.50 1.34 1.32 2.45 99% 0.89 1.75 1.66 2.37

XXIT 1%  —4.96 —254 —4.11 —549 | XXVIIl 1% —4.19 -231 —-4.13 -6.37
5% —2.88 —-0.94 —-2.43 -3.74 5% —298 -—145 —2.47 —4.06

10% —2.62 —-0.78 —2.10 —3.19 10% —2.08 —-0.82 —2.02 -3.11

90% —0.31 0.98 0.50 0.65 90% 0.18 0.80 0.43 0.84

95% —0.02 1.11 0.96 1.09 95% 0.30 0.91 0.69 1.42

99% 0.11 1.34 1.90 2.59 99% 0.98 1.37 1.58 2.12

XXIV. 1% —423 —-148 -3.35 —4.40 | XXIX 1% —445 —-237 -3.93 —5.89
5% —3.45 —-1.16 —2.82 —4.12 5% —2.84 -—1.28 —2.78 —4.40

10% -3.03 —0.79 —-229 —3.56 10% —244 -0.94 -2.14 -3.29

90% —0.65 1.17 0.37 0.81 90% 0.10 0.86 0.21 0.22

95% —0.45 1.53 1.09 1.90 95% 0.34 1.05 0.36 0.60

99% —0.15 2.33 1.46 2.18 99% 0.68 1.35 0.89 1.41

XXV 1% —431 -231 —-4.13 -6.37 | XXX 1% —4.63 -231 —-421 -591
5% —2.85 -—1.31 —2.47 —4.06 5%  —3.17 —-1.29 —-3.61 —547

10% —2.23 —-0.83 —2.02 -3.11 10% -2.71 —-1.03 —2.67 —3.96

90% 0.13 0.92 0.43 0.84 90% —0.12 0.86 —0.01 0.12

95% 0.38 1.09 0.69 1.42 95% 0.16 1.18 0.58 0.97

99% 0.75 1.34 1.58 2.12 99% 0.40 1.35 1.03 1.56

Note: 100 replications. Percentage bias is gresented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 3.A: Monte Carlo Results. t-statistic for p (Cont.)

FE K AB BB FE K AB BB

XXXI 1% —4.02 —-2.15 —4.07 —6.45 | XXXVII 1% —-3.62 —-1.66 —3.55 —5.30
5%  —2.86 —1.27 —242 —4.27 5% —292 -1.16 —-239 -—-344

10% -244 -1.04 —-2.11 —-3.48 10% —2.66 —0.92 —-191 -2.65

90% 0.25 0.92 0.67 1.14 90% 0.48 1.32 0.73 1.37

95% 0.41 1.06 0.88 1.60 95% 0.95 1.69 1.22 1.83

99% 1.03 1.50 1.16 2.95 99% 1.57 2.17 2.06 3.23

XXXII 1% -399 -—-197 -355 =595 | XXXVIII 1% -391 -1.74 -3.54 —5.06
5% —290 -1.11 -2.62 —4.29 5%  —3.50 —1.38 —2.79 —3.87

10% —2.59 —-0.96 —229 —3.83 10% —2.86 —0.86 —2.22 —3.16

90% —0.01 0.85 0.44 0.80 90% 0.19 1.28 0.56 1.09

95% 0.18 1.02 0.59 1.23 95% 0.83 1.78 0.92 1.45

99% 0.83 1.50 1.12 1.63 99% 1.09 1.96 1.50 2.93
XXXIT 1% —3.45 —2.20 —2.88 —4.79 | XXXIX 1% —4.62 —-1.64 -3.03 —4.47
5% =275 —-091 -2.60 -3.61 5%  —3.61 —1.27 —249 —4.09

10% —2.40 —0.57 —2.18 —3.43 10% —340 —0.82 —-2.14 —3.20

90% —0.05 1.94 0.22 0.50 90% —0.23 1.60 0.23 0.70

95% 0.10 3.06 0.48 0.97 95% 0.12 2.28 0.45 1.03

99% 0.97 3.97 1.13 1.53 99% 0.85 2.80 0.94 1.92
XXXV 1% —-3.69 —-2.00 —-422 —6.19 | XL 1% —348 —-1.72 —-4.07 —6.24
5% —2.82 -1.37 —-2.65 —4.07 5% —3.12 -145 -2.16 -3.37

10% —2.25 —1.01 —2.27 -3.24 10% —2.25 —-0.83 —2.00 —2.87

90% 0.48 0.96 0.35 0.85 90% 0.35 1.03 0.57 0.90

95% 0.85 1.23 0.62 1.47 95% 0.82 1.42 0.78 1.51

99% 1.43 1.64 1.12 1.67 99% 1.24 1.67 1.75 2.80

XXXV 1% -3.73 -1.89 —-391 —6.06 | XLI 1% —-359 -1.62 -333 -5.19
5% —2.714 -1.18 —-2.60 -3.91 5% =277 —-1.04 —-2.57 -3.33

10% —2.39 —-1.01 -2.34 —3.63 10% —243 —-0.85 —1.93 —2.96

90% 0.49 1.08 0.26 0.42 90% 0.18 1.03 0.56 0.69

95% 0.71 1.20 0.76 0.86 95% 0.46 1.25 0.72 1.10

99% 1.51 1.85 1.07 1.30 99% 0.97 1.64 1.19 2.11
XXXVI 1% —-345 -1.60 —2.87 —4.76 | XLII 1%  —-3.60 —1.44 —-3.46 —5.06
5% —2.67 —-0.90 —2.59 —4.07 5% -3.10 —-1.17 —-2.29 —-3.55

10% —2.22 —-0.72 —-2.26 —3.48 10% —2.72 —-0.93 —-2.08 -3.19

90% 0.40 1.34 0.25 0.41 90% —0.07 1.09 0.46 0.55

95% 0.97 1.60 0.57 0.72 95% 0.31 1.42 0.55 0.81

99% 1.48 1.99 1.50 2.51 99% 0.87 1.70 0.92 1.78

Note: 100 replications. Percentage bias is
and 99th quantiles for the standard norm

1.64 and 2.32.

al

resented in absolute value. The 1th. 5th, 10th, 90th, 95th
distribution are, respectively, —2.32, —1.64, —1.28, 1.28,
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Table 3.A: Monte Carlo Results. t-statistic for p (Cont.)

FE K AB BB FE K AB BB

XLIII 1% —-3.57 —-1.82 —-3.27 —4.89 | XLIV 1% -345 -1.61 -3.85 —5.13
5%  —2.69 —-1.22 —-236 —343 5% —2.70 -1.13 —-3.29 —5.08

10% -2.35 —1.02 -1.95 -3.01 10% -2.24 -0.85 —-1.94 -3.17

90% 0.59 1.11 0.64 1.41 90% 0.42 1.09 0.08 0.22

95% 0.92 1.36 0.79 1.91 95% 0.60 1.25 0.32 0.43

99% 1.22 1.56 1.70 2.53 99% 1.07 1.60 0.41 0.65

XLv. 1% -3.70 —-1.66 —3.47 —5.16
5% —2.89 -—1.17 -243 -3.75
10% —249 -0.89 -—2.26 -—3.21
90% 0.42 1.34 0.36 0.66
95% 0.67 1.47 0.93 1.16
99% 0.89 1.59 1.32 1.90

Note: 100 replications. Percentage bias is é)resented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 4.A: Monte Carlo Results. t-statistic for 4

FE K AB BB FE K AB BB

I 1%  —3.67 —243 -3.05 —4.86 | VI 1% -349 -2.36 —3.54 —4.89
5%  —2.13 —-1.45 —-227 -3.32 5% —229 -—-1.56 —2.12 -3.37

10% —1.89 —-1.26 -—1.64 —2.55 10% -1.68 —1.19 —-1.86 —2.49

90% 1.19 0.76 0.90 1.33 90% 1.21 0.77 1.24 1.83

95% 1.43 0.87 1.28 1.88 95% 1.72 1.09 1.56 2.19

99% 2.40 1.38 1.67 2.56 99% 2.25 1.60 2.12 2.99

Im 1% -372 -239 -304 —455|VII 1% —-292 -1.99 -233 -3.25
5%  —2.15 —1.54 —225 —-3.37 5%  —2.09 -142 —-1.56 —2.19

10% —-1.81 -1.26 -1.76 —2.61 10% -1.50 -1.04 -1.31 —2.07

90% 1.16 0.83 0.89 1.34 90% 1.18 0.79 1.37 1.92

95% 1.41 0.89 1.28 1.80 95% 1.38 0.90 1.74 2.26

99% 2.06 1.37 1.59 2.19 99% 2.14 1.42 2.29 3.11

m 1% -390 -292 -332 —-493 | VII 1% -299 -199 -215 -3.23
5% —233 —-1.50 —2.10 —-3.50 5%  —2.15 —-1.42 —-2.14 —-2.90

10% -1.73 —-1.23 —-1.79 —2.57 10% —-149 -1.02 -1.19 -1.55

90% 1.26 0.91 0.99 1.69 90% 1.21 0.75 1.22 1.73

95% 1.66 1.15 1.30 1.84 95% 1.41 0.90 1.33 2.25

99% 1.97 1.42 1.66 2.45 99% 2.15 1.37 1.83 2.83

v 1% -337 -—-228 -312 —4.26|1IX 1% -3.16 —2.04 —-296 —3.65
5% —2.27 -1.55 —-2.10 -3.39 5% —230 -1.65 -1.74 —2.56

10% -1.79 -1.19 -—-1.77 —2.59 10% —-149 -1.09 -1.33 -—2.12

90% 1.11 0.74 1.05 1.47 90% 1.35 0.87 1.41 1.96

95% 1.54 1.10 1.25 2.18 95% 1.60 1.14 1.76 2.52

99% 2.25 1.55 2.29 3.27 99% 2.18 1.36 2.44 3.41

vV 1% -340 —-225 -328 —4.45|X 1% -2.28 -—-1.51 -—1.85 —2.89
5%  —2.37 -1.52 —-215 —-3.29 5% —1.87 -1.28 —1.46 —2.16

10% -1.79 -1.16 -1.79 —2.61 10% -1.52 —-1.06 —-1.29 —1.92

90% 1.09 0.73 1.05 1.70 90% 1.16 0.82 1.26 1.70

95% 1.65 1.06 1.42 1.99 95% 1.49 0.98 1.50 2.12

99% 2.34 1.59 2.16 2.84 99% 1.77 1.18 2.54 3.61

Note: 100 replications. Percentage bias is é)rebented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantlles for the standard normal distribution are, respectively, —2.32,
~1.64, —128 1.28, 1.64 and 2.32.
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Table 4.A: Monte Carlo Results. t-statistic for 4 (Cont.)

FE K AB BB FE K AB BB

XI 1% —-234 -—-1.61 —-1.85 —2.92 | XVI 1% —259 -2.23 -2.18 -3.40
5% —192 -1.36 —-1.50 -—2.37 5% —1.17 —-1.25 —-1.83 —-2.75

10% -1.60 —-1.07 -1.34 —1.93 10% -0.91 —1.04 —-1.47 -2.02

90% 1.21 0.83 1.24 1.86 90% 1.62 0.74 1.40 2.00

95% 1.53 0.98 1.58 2.11 95% 1.79 0.89 1.56 247

99% 1.76 1.14 2.46 3.46 99% 2.09 1.08 2.17 3.11

XIm 1% -252 -1.89 -196 -3.17 | XVII 1% —-2.79 —-243 —-2.39 —4.03
5% —215 —147 —-1.67 —2.43 5% —1.06 -1.24 —-1.81 —2.89

10% —-1.53 -—-1.12 -1.26 —2.08 10% —-0.80 —-1.04 -1.39 —2.28

90% 1.31 0.89 1.40 2.02 90% 1.73 0.78 1.49 2.35

95% 1.72 1.05 1.75 2.40 95% 1.97 0.93 1.94 2.55

99% 2.05 1.19 2.45 3.29 99% 2.32 1.21 2.14 3.22

Xmar 1% —-262 -1.89 —-1.78 —-2.66 | XVIII 1% —-3.21 —-2.68 —-291 —5.17
5% —1.75 —-1.22 —147 -—-2.20 5% —-1.16 —-129 —-190 -3.01

10% —-1.49 —-1.03 -1.23 —-1.90 10% -0.99 -1.10 -1.53 —2.27

90% 1.10 0.71 1.29 1.76 90% 1.68 1.01 1.31 2.25

95% 1.25 0.84 1.49 2.27 95% 1.99 1.39 1.50 2.76

99% 1.78 1.24 1.97 2.84 99% 2.42 2.13 2.21 3.60

XIv 1% —-2.76 -2.01 -1.83 —-2.82 | XIX 1% -2.56 —2.16 —-2.50 —3.91
5% —-1.75 -1.23 —-1.52 —-230 5%  —1.54 —1.43 —-2.09 -2.79

10% —-152 —-1.03 -1.24 —1.92 10% -0.99 -1.09 -1.04 -1.81

90% 1.11 0.71 1.32 1.68 90% 1.61 0.78 1.79 241

95% 1.25 0.87 1.47 2.30 95% 2.08 1.11 1.88 2.78

99% 1.82 1.26 2.15 3.12 99% 2.48 1.43 2.67 3.75

Xv 1% -3.09 -227 -1.95 -—-294 | XX 1% —2.719 —-237 -2.80 —4.52
5% —1.86 —-1.30 —-1.80 —2.25 5%  —1.47 —-1.48 —-2.05 -—-2093

10% —-1.55 —1.06 —1.23 —2.01 10% —-0.78 —-0.94 —-1.15 —1.68

90% 1.15 0.71 1.25 1.61 90% 1.71 0.82 1.67 2.69

95% 1.38 0.95 1.63 2.39 95% 2.20 1.15 2.17 2.94

99% 1.99 1.35 2.20 3.08 99% 2.50 1.38 2.63 3.74

Note: 100 replications. Percentage bias is é)resented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 4.A: Monte Carlo Results. t-statistic for 4 (Cont.)

FE K AB BB FE K AB BB

XXI 1% —298 —239 -298 —5.13 | XXVI 1% —-1.80 —-1.85 —2.01 —2.69
5% —1.41 —-1.40 -1.63 -3.02 5% —1.07 -1.33 —-1.00 —1.34

10% —0.93 —-0.96 —1.24 —2.12 10% -0.78 —-1.11 —-0.59 —1.01

90% 1.90 1.04 1.73 2.61 90% 2.02 0.90 1.94 2.99

95% 2.19 1.21 2.07 3.24 95% 2.32 1.10 2.10 3.33

99% 2.33 1.28 2.40 3.84 99% 3.06 1.63 2.48 3.53

XX1Im 1% -170 —-1714 -232 -353 | XXVII 1% -192 -1.92 -1.86 —2.65
5% —-119 -1.37 —-2.17 —-3.32 5% —1.22 -142 -1.06 -2.17

10% -0.82 —-1.13 —1.80 —2.76 10% —-096 —-1.22 —0.89 —1.66

90% 1.91 0.82 1.47 1.75 90% 2.00 0.91 2.04 3.20

95% 2.26 1.09 1.49 1.82 95% 2.31 1.16 2.31 2.83

99% 2.70 1.37 1.51 2.18 99% 3.01 1.64 2.70 5.17

XX 1%  —1.76 —1.88 —1.85 —2.47 | XXVIII 1% -1.76 —-1.66 —1.48 —2.27
5% —1.40 -168 —-1.11 -1.76 5% —-1.16 —-1.23 —-1.02 -1.50

10% -0.70 —-1.14 —-0.88 —1.13 10% —0.77 —0.98 —0.55 —0.85

90% 1.89 0.72 1.91 2.69 90% 1.87 0.92 1.57 2.13

95% 2.48 1.16 2.27 3.20 95% 2.13 1.08 2.16 2.85

99% 2.88 1.48 2.61 4.17 99% 2.73 1.49 2.24 3.32

XXIv 1% -2.01 -215 -1.73 -3.21 | XXIX 1% -199 —-191 —-1.68 —2.52
5% —1.53 -1.59 —-1.71 —-2.98 5% —1.00 -1.19 —0.92 —1.42

10% —-0.84 —-1.21 —-1.35 —1.92 10% -0.62 —-0.93 -0.39 —0.69

90% 1.87 0.83 1.34 2.19 90% 2.07 1.01 1.79 2.79

95% 2.25 1.07 2.06 3.03 95% 2.42 1.24 2.22 3.13

99% 2.82 1.47 2.43 3.92 99% 2.69 1.43 2.38 3.48

XXV 1% -1.83 —-1.80 -2.16 —3.22 | XXX 1% —-2.00 -1.90 -1.76 —2.96
5% —-1.13 —-127 -0.71 -1.31 5% —1.07 -1.19 -0.88 -—2.07

10% —0.88 —1.16 —0.57 —1.01 10% —-0.82 —1.05 —-0.72 —1.63

90% 1.99 0.96 1.75 2.60 90% 1.91 0.84 1.94 3.05

95% 2.19 1.08 2.05 3.01 95% 2.11 1.07 2.22 3.46

99% 3.09 1.71 2.30 3.52 99% 2.74 1.50 2.52 4.82

Note: 100 replications. Percentage bias is gresented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.
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Table 4.A: Monte Carlo Results. t-statistic for 4 (Cont.)

FE K AB BB FE K AB BB

XXXI 1%  —-3.73 —2.23 =361 -—5.38 | XXXVII 1% -3.2v -—-1.78 -=2.73 —-3.70
5% —293 -1.65 —-294 -3.95 5% —2.53 -1.26 —-1.90 -2.71

10% —2.06 —-1.04 -—2.29 —3.32 10% —-2.13 —-0.95 —-1.77 —2.33

90% 0.58 0.80 0.58 0.95 90% 0.69 1.07 0.99 1.54

95% 1.00 1.10 0.82 1.14 95% 0.97 1.21 1.35 2.16

99% 1.29 1.33 1.34 1.97 99% 1.53 1.60 1.87 2.48

XXXII 1% —3.88 —228 —-349 —5.10 | XXXVIII 1% -3.20 -1.65 —-294 —-3.90
5% —2.85 -1.60 -3.03 —4.14 5% =259 —-1.22 —-207 -2.94

10% -2.35 —-1.19 —-2.05 —2.96 10% —2.33 —1.00 —-1.74 —242

90% 0.43 0.85 0.52 0.67 90% 0.50 1.02 0.86 1.21

95% 0.76 1.03 0.83 1.17 95% 0.82 1.27 1.38 1.98

99% 1.27 1.38 1.30 2.15 99% 1.72 1.84 1.65 2.57
XXXTT 1% —4.15 -2.71 —-3.83 —6.14 | XXXIX 1% =314 -1.70 -3.04 -—5.53
5%  —247 -1.718 —2.48 —-3.59 5% —2.82 —-152 —-1.89 -3.19

10% —2.13 —-1.18 —-1.90 —2.98 10% —-245 —-1.14 -1.74 —-2.59

90% 0.55 0.90 0.81 1.33 90% 0.55 0.89 1.16 1.70

95% 1.05 1.20 1.37 2.39 95% 0.79 1.17 1.32 2.43

99% 1.28 1.36 1.66 2.77 99% 1.63 1.64 1.62 3.27
XXXIV 1% —-347 -2.12 -3.32 —-4.62 | XL 1% —2.88 —1.56 —2.72 —3.74
5% —2.83 -1.65 —2.99 —4.14 5% —2.69 —-144 —-2.00 -2.92

10% —2.20 —1.20 -—248 —3.55 10% —240 —-1.23 —-1.56 —2.40

90% 0.81 0.92 0.43 0.58 90% 0.52 0.85 0.64 0.94

95% 0.98 1.05 0.69 0.94 95% 1.11 1.27 1.05 1.60

99% 1.51 1.41 1.21 1.57 99% 1.61 1.69 1.82 2.65

XXXV 1% -349 -2.09 -3.53 -—-542 | XLI 1%  —-3.07 —-1.66 —3.24 —4.48
5%  —2.79 -—1.55 —-3.04 —4.05 5% —2.73 -1.39 —-1.92 —-2.70

10% —2.18 —1.09 —246 —3.48 10% —2.30 —-1.08 —1.50 —2.50

90% 0.72 0.91 0.35 0.33 90% 0.41 0.85 0.65 1.07

95% 0.87 1.01 0.66 1.01 95% 0.99 1.31 0.97 1.19

99% 1.50 1.46 1.07 1.46 99% 1.44 1.58 1.36 2.20
XXXVI 1% —-3.89 —-247 -3.96 —6.59 | XLII 1% —-3.14 —-1.78 —2.88 —4.69
5%  —2.41 —-1.33 —244 -3.67 5% —2.69 -—-136 —-1.84 —3.58

10% -1.98 —-1.09 -1.95 —2.93 10% -2.12 -1.00 -1.65 —2.96

90% 0.76 0.92 0.56 1.33 90% 0.60 0.97 0.87 1.64

95% 1.06 1.10 0.88 1.65 95% 0.87 1.17 1.06 2.08

99% 1.44 1.34 1.61 2.84 99% 1.39 1.46 1.93 3.46

Note: 100 replications. Percentage bias is
and 99th quantiles for the standard norm

1.64 and 2.32.

al

resented in absolute value. The 1th. 5th, 10th, 90th, 95th
distribution are, respectively, —2.32, —1.64, —1.28, 1.28,
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Table 4.A: Monte Carlo Results. t-statistic for 4 (Cont.)

FE K AB BB FE K AB BB

XLIII 1% —2.78 —1.55 —2.28 —-3.58 | XLIV 1% -2.94 -1.63 —2.60 —4.31
5% —241 -130 —-2.06 —2.80 5% —2.46 —-1.24 —-193 -3.13

10% —-2.13 —-1.09 —-1.70 —2.47 10% —2.07 —-0.98 —-1.75 —2.65

90% 0.75 0.95 0.67 0.91 90% 0.58 0.90 0.53 0.84

95% 1.07 1.18 1.11 1.29 95% 1.18 1.31 0.86 1.01

99% 1.62 1.57 1.46 2.24 99% 1.51 1.56 1.22 1.69

XLv. 1% —-320 -1.85 —296 —5.32
5% —219 -1.12 -2.01 -297
10% —2.01 -0.99 -1.69 -—-2.71
90% 0.59 0.87 0.64 1.29
95% 1.23 1.34 1.08 1.74
99% 1.65 1.63 1.42 2.65

Note: 100 replications. Percentage bias is é)resented in absolute value. The 1th, 5th, 10th
90th, 95th and 99th quantiles for the standard normal distribution are, respectively, —2.32,
—1.64, —1.28, 1.28, 1.64 and 2.32.

45




	Documento de Trabajo 02/2002
	
	Sebastián Galiani
	Martín González-Rozada



